Infectious Disease

Nigel Yarlett of Pace University in the U.S. will determine whether a virus that infects the intestinal parasite Cryptosporidium is a valuable target for developing drugs against the associated chronic diarrheal disease, which causes substantial morbidity and mortality in young children in low-resource settings. The double-stranded RNA Cryspoviruses are not harmful to the parasite, and instead likely enhance the parasite's ability to infect and harm humans.

Gregory Goldgof and Elizabeth Winzler of the University of California, San Diego in the U.S. will use a genetically modified drug-sensitive yeast strain to quickly and inexpensively identify the cellular target of compounds that can kill the parasite Cryptosporidium, which is a major cause of diarrhea-associated deaths of young children in developing countries. Currently, there is only one treatment available and it is of limited use in some of the more severe cases. The yeast strain has been modified to lack transporter proteins that remove toxic compounds from the yeast cells.

Helder Nakaya of the University of Sao Paulo in Brazil will identify hotspots of malaria transmission using the GPS data from mobile phones of infected individuals in order to find asymptomatic cases and help elimination efforts. Malaria is a major public health concern in many countries including Brazil. Eliminating the disease is difficult due in part to the existence of asymptomatic individuals who can still spread the disease but are difficult to detect. Relying on a patient remembering where they have been to identify asymptomatic individuals has not been adequate.

Phillip Tarr of Washington University in the U.S. is developing a method to evaluate gut permeability by measuring levels of ingested fluorescent molecules non-invasively through the skin. Gut permeability is increased in infants with environmental enteropathy, which is associated with impaired growth and development, and is prevalent in developing countries. Current tests are problematic due to the required collection and handling of body fluids from young children, and can produce varying results.

Nils Pilotte and Steven Williams of Smith College in the U.S. along with Lisa Reimer at the Liverpool School of Tropical Medicine in the United Kingdom are developing a simple and inexpensive approach to monitor diseases caused by parasites that thrive in mosquitos based on detection in mosquito feces. Current approaches for disease surveillance are expensive, insensitive, or labor intensive, and are generally unsuitable for the areas in which they are needed most, including where disease incidence has decreased.

James Tibenderana and colleagues of the Malaria Consortium in the United Kingdom are adapting a "community dialogue" approach to build trust between communities and the health system in Mozambique in order to boost participation in Mass Drug Administration (MDA) programs against neglected tropical diseases. Low participation in MDA programs is thought to be caused by negative local perceptions of these diseases and a limited understanding of the goals of MDAs.

Robert Gorkin of the University of Wollongong in Australia is developing tough hydrogels as an alternative material to latex for making male condoms with enhanced tactile (touch) sensitivity to improve sexual experience. Tough hydrogels are highly elastic and mechanically tough materials. Unlike latex, they can increase sensitivity to touch, incorporate lubrication, and be coupled to other components, such as stimulants and antiviral drugs.

James Nataro of the University of Virginia in the U.S. is developing new mouse models of environmental enteric dysfunction (EED) to explore how enteric pathogens commonly found among children in developing countries can affect intestinal function and cause growth retardation. In Phase I, they developed mouse models for five of the common pathogens and found that, as in humans, malnutrition (protein or zinc deficiency) enhanced the severity of infection, associated growth retardation, or the presence of intestinal inflammation.

Kirsten Hanson from the Instituto de Medicina Molecular in Portugal has developed a screening strategy to identify compounds that specifically block the final maturation stage of the malaria-causing Plasmodium parasite that occurs in human liver. These compounds could prevent the symptoms and establishment of malaria in humans (i.e. act as prophylactics), and block transmission back to the mosquitoes.

L. David Sibley at Washington University School of Medicine in the U.S. is developing a long-term in vitro intestinal epithelial culture system for the intracellular parasite Cryptosporidium, which causes severe diarrheal disease in both humans and animals, and is refractory to many anti-parasitic drugs. Currently, Cryptosporidium can only be grown in infected calves or in short-term in vitro cultures, which cannot be used for the high-throughput chemical screens needed to identify new drugs.