Infectious Disease

Dengue is a mosquito-borne deadly disease that is rapidly spreading across the globe. Because dengue is difficult to diagnose with no curative therapy, it is essential to prevent transmission and outbreaks before they escalate. The vector, Aedes, is extremely hard to target as they preferentially breed in smaller, man-made water containers and bite outside during the day. Aden in Yemen is an urbanized city in a tropical environment with a weak sanitation infrastructure due to the war.

Models of infectious disease outbreaks are essential to optimize health crisis response, especially in complex environments. It informs pharmaceutical distribution, immunization campaigns, medical care deployment, security provisions, and more. While data-driven approaches are standard they remain largely reactive, focusing on what happened and not taking advantage of newer, algorithmic methods that enable responders to instead ask what could happen and do so safely, cheaply, and effectively.

Cutaneous Leishmaniasis (CL) is epidemic in conflict zones, up to 40 x pre-war levels. The vector, sandfly, breeds in the destroyed buildings of urban epicenters. In Syria, mass-population displacement, poor living conditions and destruction of health services increases vulnerability to infection and spreads CL across previously non endemic areas. Conflict restricts essential access, hampering delivery and effectiveness of conventional prevention campaigns, leaving millions unprotected.

Charles Sande of the African Research Collaboration for Health (ARCH) in Kenya will build on their existing SARS-CoV-2 genomic surveillance work covering the six counties of Coastal Kenya to identify new SARS-CoV-2 variants and evaluate their sensitivity to existing vaccines. Daily naso- and oropharyngeal samples from suspected COVID 19 cases will be processed for PCR testing and genome sequencing to identify any new SARS-CoV-2 variants.

Peter Quashie of the University of Ghana, West African Centre for Cell Biology of Infectious Pathogens in Ghana will determine the impact of SARS-CoV-2 viral variants and their susceptibility to neutralization by vaccine-induced and naturally-acquired immunity to better manage pandemic control in Ghana. They will evaluate over 600 existing plasma samples taken at multiple timepoints from both vaccinated and unvaccinated COVID-19 patients with associated SARS-CoV-2 sequencing data to identify the viral variants, and additional samples as new variants emerge.

Pontiano Kaleebu of the Uganda Virus Research Institute in Uganda will expand their genome surveillance platform to monitor the circulation of SARS-CoV-2 variants in Uganda to help inform timely public health decisions and the development of diagnostics and vaccines. They will obtain geographically-representative COVID-19 patient samples for genomic sequencing, as well as samples from strategic sites including points of entry, where several variants have emerged.

Christian Happi of Redeemer's University in Nigeria will assess the impact and risks of emerging SARS-CoV-2 virus variants in Africa, which are threatening vaccination efforts. They will produce viral pseudotypes using genomic sequences of around ten SARS-CoV-2 variants-of-concern that are dominant in Africa.

Abdoulaye Djimde, President of the Pathogens genomic Diversity Network Africa (PDNA), will work to better prepare Africa to fight infectious diseases and tackle those of the future. Dr. Djimde’s research group uses molecular and genetic approaches to study malaria, and their results have supported policy decision-making in Mali and the West Africa sub-region. His work on anti-malarial resistance led to a change in first-line therapy, and his group also serves as a training ground for many scientists in Africa.

Anita Ghansah, Senior Research Fellow at the Noguchi Memorial Institute for Medical Research at the University of Ghana, will build a cost-efficient malaria molecular surveillance system with high spatial and temporal resolution that covers the entire country. Dr. Ghansah is an internationally-trained genetic epidemiologist. Recognizing the power of genomics and bioinformatics approaches for bolstering malaria surveillance in Ghana, she has been a pioneer of bioinformatics training in the country.

Ify Aniebo, Senior Research Scientist and Principal Investigator at the Health Strategy and Delivery Foundation in Nigeria, will integrate molecular and genomics data for tracking drug resistance and disease transmission to strengthen malaria elimination efforts in Nigeria, which has one of the highest global burdens. Dr. Aniebo is a molecular geneticist working on malaria drug resistance, and is acknowledged as one of her country’s top young health leaders. She is also devoted to empowering the next generation of African females into the sciences.