Health Diagnostics

Rebecca Richards-Kortum of Rice University in the U.S. will measure light scattered by malaria-infected red blood cells using a small microscope that can be placed on the skin as a way to detect infection in patients without the need to draw blood. This rapid and painless diagnostic would not require consumable reagents or a trained operator, and would not generate biohazardous waste.

Roozbeh Ghaffari, Patrick Beattie, Jason Rolland and Jeff Carbeck of Diagnostics For All & MC10 Inc. will develop disposable paper-based diagnostics devices embedded with optoelectronics, allowing quantitative colorimetric analysis for HIV viral load monitoring. This platform addresses practical limitations of current image capture methodologies and eliminates the need for external readers.

Ranjan Nanda and Virander Chauhan of the International Centre for Genetic Engineering & Biotechnology in India will gather breath samples from tuberculosis patients and use gas chromatography-mass spectrometry (GC-MS) to identify and track unique molecules such as volatile organic compounds (VOCs) that might serve as biomarkers to diagnose tuberculosis. The overall goal is to then create a handheld "electronic nose" to diagnose the disease in resource-poor settings.

William Royea of Next Dimensions Technology, Inc., in the U.S. seeks to develop a point-of-care breath analyzer. The proposed system aims to use an array of chemical films that are sensitive to changes in electrical conduction as a result of volatile organic compounds (VOCs) produced by tuberculosis (TB). In this project's Phase I research, Royea and his team demonstrated proof-of-concept for detecting breath-based biomarkers of TB in a clinical setting.

Saurabh Gupta and Ron Weiss of Massachusetts Institute of Technology in the U.S. proposed creating sentinel cells that can detect the presence of a pathogen, report its identity with a biological signal, and secrete molecules to destroy it. This project's Phase I research demonstrated that commensal bacteria can be engineered to detect and specifically kill the model bacterial pathogen Pseudomonas aeruginosa.

Roozbeh Ghaffari, Patrick Beattie, Jason Rolland, and Jeff Carbeck of Diagnostics For All & MC10 Inc. in the U.S. sought to develop disposable paper-based diagnostics devices embedded with optoelectronics, allowing quantitative colorimetric analysis for HIV viral load monitoring. This platform addresses practical limitations of current image capture methodologies and eliminates the need for external readers.

Luke Savage and Dave Newman led engineers at Exeter University in the United Kingdom in a program to develop a handheld, inexpensive battery-powered instrument that can rapidly diagnose malaria. By using magneto-optics to detect the hemozoin crystals produced as a byproduct of malaria parasite digestion of hemoglobin in the red blood cell, they avoid relying on invasive blood sampling.

Jackie Obey of the University of Eastern Africa, Baraton in Kenya will test the efficacy of a diagnostic test for malaria in which small amounts of blood are mixed with an iron solution to create vibrant colors that indicate the amount of a protein released by the malaria parasite.

In the developing world, many people with health problems never receive an accurate diagnosis or appropriate treatment because clinicians lack tools to detect and diagnose diseases and conditions quickly, accurately, and inexpensively. Sophisticated medical tests that could help improve care are not only often unaffordable, they require extensive laboratory facilities and deliver results days later - a hardship for people who may live many miles from the nearest health clinic. Dr.

In the developing world, lack of convenient and accurate tools that can detect and diagnose diseases and other health problems means that many health risks remain undetected or receive inappropriate treatment. Dr. Yager's team, in collaboration with research groups from private industry as well as the nonprofit sector, is working to develop a low-cost, easy-to-use device that will rapidly test blood for a range of health problems prevalent in developing countries, such as bacterial infections, nutritional status, and HIV-related illnesses.