Health Diagnostics

Laurent Dembele of the Université des Sciences, des Techniques et des Technologies de Bamako in Mali will use their cell-based ex vivo phenotypic drug assay to identify approved anti-malarial drugs that are effective also against the neglected malaria-causing pathogen Plasmodium malariae, which has become widespread in sub-Saharan Africa. To eliminate malaria, treatments should be effective for all circulating malaria pathogens. However, current artemisinin-based combination therapies (ACTs) are largely designed to target the historically more prevalent P.

Janine Aucamp of North-West University in South Africa will produce a novel drug screening platform for malaria by building a physiologically-relevant in vitro tissue model of the sinusoidal space of the human liver, which supports the development of liver-stage malaria parasites (sporozoites). Artemisinin-based combination therapies are first-line treatments for malaria but their efficacy suffers from the development of resistance, thus alternative approaches are needed.

Lyle McKinnon of the University of Manitoba in Canada will test whether a specific type of immune cell known as tissue resident memory T cells, which are found in the nasal cavity during SARS-CoV-2 infection, help limit disease severity and viral replication. The nasal mucosa is the first place in the body that is exposed to the SARS-CoV-2 virus. However, little is known about the local immune response and how this may influence disease progression, which varies dramatically between people.

Fatma Guerfali of Institut Pasteur de Tunis in Tunisia and Jesse Gitaka of Mount Kenya University in Kenya, will implement wastewater SARS-CoV-2 surveillance in diverse sanitation settings in Kenya and Tunisia to help determine the true number of people infected with SARS-CoV-2, which is currently underestimated. The detection of SARS-CoV-2 RNA in sewage can be used to monitor virus circulation in the population. However, this is more challenging in settings with diverse sanitation practices, such as in many parts of Africa.

Jessica Manning and Fabiano Oliveira of the National Institute of Allergy and Infectious Diseases in the US are leveraging metagenomic next-generation sequencing technology to control vector-borne and enteric diseases in Cambodia. In Phase I, which coincided with the country's worst ever recorded dengue epidemic, they documented the full range of pathogens carried by wild mosquitoes and in serum samples from around 400 febrile patients in a peri-urban hospital in Kampong Speu Province.

Elly Munde of the Hospital and Health Administration Services in Kenya will integrate a multiplex PCR assay into an existing malaria molecular surveillance program to detect a specific variant in the causative malaria parasite Plasmodium falciparum, which is undetectable by most rapid diagnostic tests and is threatening successful disease control. The specific haplotype of concern has a deletion of the genes encoding for histidine-rich proteins 2 and 3 (hrp2/3). Individuals infected with this haplotype produce a false negative result on most diagnostic tests.

Agaba Bosco from the Infectious Diseases Research Collaboration in Uganda will integrate a molecular surveillance system into their National Malaria Control Program to diagnose a currently under-detected variant of the causative parasite Plasmodium falciparum and better track spread. Most rapid diagnostic tests for malaria detect a specific parasite protein, however a new variant has emerged that has a deletion of the corresponding pfhrp2/3 gene, leading to a false negative test result.

Carl Marincowitz and colleagues at the University of Sheffield in the United Kingdom and the University of Cape Town in South Africa will develop a risk assessment tool to help emergency clinicians quickly decide whether a patient with suspected COVID-19 needs emergency care or can be safely treated at home to avoid overburdening hospitals particularly in low- and middle- income countries (LMICs).

Dale Barnhart and colleagues at Harvard Medical School in the U.S. and Partners in Health of Haiti, Malawi, Mexico, and Rwanda will determine how the COVID-19 pandemic has impacted health care provision and utilization for patients with HIV, heart disease, and diabetes, and the health outcomes of these patients, in all four countries. They will pool existing electronic medical data on chronic care patients collected from up to 30 health facilities in each country and create a harmonized database to identify the impacts of COVID-19 and any successful strategies used to improve care.

Juliane Foseca de Oliveira and colleagues at Fiocruz in Brazil will develop mathematical and statistical methods to model COVID-19 infection transmission, prevention and control across populations in Brazil to better inform local intervention efforts. Social and economic inequalities are known to shape the spread of diseases, therefore the team will integrate existing health data together with social and economic determinants for 5,570 Brazilian cities, as well as assessing data on the effects of the mitigation strategies and social mobility patterns.