

Time	Title	Speaker/Moderator
11:20-11:32	Establishing Context and Need (12 min)	Srivalli Krishnan & Chris Damman Gates Foundation
11:32-11:38	Fermented Foods Impact on Inflammation and Microbiome Diversity (6 min)	Erica Sonnenburg Stanford University
11:38-11:44	Inflammation and Microbiome in Mother Infant Dyads (6 min)	Najeeha Iqbal VITAL Pakistan Trust
11:44-11:50	Fermented Foods GC Call (6 min)	Ravi Sheth Gates Fellow
11:50-11:56	Sequencing Capacity Development & Coordination of a Collaborative Network (6 min)	Aashish Jha NYU Abu Dhabi
11:56-12:20	Q&A (24 min)	Shelby Montgomery & Brendan Thomason Gates Foundation

BILL& MELINDA GATES foundation

FERMENTED FOODS GRAND CHALLENGE

October 21, 2020

Srivalli Krishnan Bill & Melinda Gates Foundation

CONFIDENTIAL

A MULTI-SECTORAL EFFORT FOR IMPROVED NUTRITION

Reference

UNICEF. Improving Child Nutrition. New York, United Nation's Children's Fund (UNICEF), 2013.

- Due to the multisectoral causes of undernutrition, multisectoral approaches to improve nutrition are needed. These approaches span food, health, and social protection sectors.
- Good nutrition also depends on adequate practices, particularly for women and children, and thus requires demand-side interventions.
- Income growth alone is not sufficient to address undernutrition.
- Diet quality is fundamental to good health and nutrition. Many micronutrients and macronutrients are necessary, not just one.

HISTORY OF CONSUMPTION OF FERMENTED FOODS IN INDIA/ASIA

From North to South, East to West – Traditional Indian foods have been fermented since 1000 BC

WHY TRADITIONAL FOODS WERE FERMENTED?

- Relatively simple process and can be done within household
- Can preserve seasonal foods for a longer time
- Economical process for preserving foods
- Increases flavor and digestibility
- Improved nutritional benefits

Categories of fermented foods in India:

(i) Cereal-based (with/without pulses) fermented foods
(ii) Cereal/pulse and buttermilk-based fermented food
(iii) Cereal-based fermented sweets and snacks
(iv) Milk-based fermented foods
(v) Vegetable, bamboo shoot (BS) and unripe fruitsbased fermented foods
(vi) Meat-based fermented foods
(vii) Pulse (legume)-based fermented foods.

FROM STRATEGY TO ACTION AND SCALE

SCALING UP EFFORTS FOR FOOD SYSTEMS

- How can fermented foods be introduced as part of social safety nets/ school feeding/ MDM programs?
- How can we promote consumption of fermented foods for critical lifecycle periods?
- What are the behaviors that promote/ inhibit consumption of fermented foods?
- Can these foods offer long term nutrition solutions to developing country challenges?

SOME DISCOVERY & TOOLS PERSPECTIVES

GROWTH AND RESILIENCE FRAMEWORK

A GASTROENTEROLOGIST'S VIEW OF THE WORLD

We are tubes:

- That have evolved to maximize energy absorption and transformation
- The gut lumen creates a controlled environment for host factors *and microbes* to break down and transform foods into more nutritious and absorbable nutrients
- Malnutrition represents not just the wrong foods but the wrong bugs and the impact of both on the efficiency of capturing food energy (maldigestion, malabsorption, inflammation, metabolic inefficiency) for growth!

THE HEALING POWER OF FOOD & MICROBES

"Let food by thy medicine"-Hippocrates (400 BC)

NEXT GENERATION FOODS & MICROBIAL INTERVENTIONS

Pilot Trial: Fermented Foods Impact on Inflammation and Microbiome Diversity

Erica D. Sonnenburg, PhD Senior Research Scientist Department of Microbiology and Immunology Stanford University School of Medicine

How can we manipulate the gut microbiota to improve health?

Can we change **immune** status and improve **health** with **diet**induced **microbiome** alterations?

In collaboration with Christopher Gardner (Stanford)

Participants increased fermented foods intake and microbiome diversity

Fermented food had an indirect effect on microbiota diversity

	Streptococcus mitis	
	Streptococcus pneumoniae	
	Streptococcus salivarius	
	thermophilus	
	Paenibacillus lactis	
	Micrococcus luteus	
Yoghurt	Bifidobacterium animalis	
5	Lactobacillus rhamnosus	
	Lactobacillus delbrueckii	
	Lactobacillus paracasei	
	Lactobacillus rhamnosus	
	Lactobacillus plantarum	
	Lactobacillus rhamnosus	
	Lactobacillus paracasei	
Kefir	Lactobacillus delbrueckii	
	Lactococcus lactis	
	Lactobacillus plantarum	
Sauerkraut	Micrococcus luteus	
	Lactobacillus paracasei	
	Lactobacillus lactis	
Cottage cheese	Lactobacillus paracasei	
	Bacillus pumilius	
Kimchi	Lactobacillus sakei	
	Lactobacillus curvatus	
	Paenibacillus lactis	
Kombucha	Lactobacillus brevis	
	Lactobacillus plantarum	
Gut Shots	Lactobacillus paraplantarum	

New ASVs pooled across cohort

Found in food (biotyper) Not found in food

Fermented food consumption decreased inflammatory cytokines and signaling

cytokines/chemokines

Inflammatory signaling

Summary

Gut microbiome-targeted diets may be a low cost, scalable approach for improved health across populations

In a cohort of healthy US adults, **fermented foods**:

- Increase diversity of the gut microbiota
- Decrease markers of inflammation

What are the yet-unrecognized health benefits of fermented foods?

 \rightarrow We need more well-designed human trials that employ –omics technologies

Nutritional support for lactating women with or without azithromycin for infants compared to breastfeeding counselling alone in improving the 6-month growth outcomes among infants Pakistan

Fermented Foods Grand Challenge October 21, 2020

Organizations VITAL Pakistan & Aga Khan University Study Team Yasir Shafiq Dr. Fyezah Jehan Dr. Imran Nisar Dr. Ameer Muhammad Dr. Benazir Baloch Nida Yazdani Uzma Khan

Laboratory Team Dr. Najeeha Iqbal Aneeta Hotwani Furqan Kabir

Start date

August 1, 2018 **Enrollment completion** May 19, 2020 **Last follow-up** Expected on November 13, 2020

METHODOLOGY

Open-labelled, community-based randomized controlled trial (blinded at outcome assessment) – enrolling mother within first week of birth having MUAC < 23.0

TRIAL PROCEDURE

After enrollment, all mothers and infants are being followed until 180 days

AIM OF STOOL BIOMARKERS ANALYSIS

Stool Biomarkers: Currently data is available on **n=80** participants

Observe differences between maternal and infant biomarkers

To understand differences in baseline state between maternal and infant biomarkers.

2 Determine which biomarkers associate with good clinical outcomes

These include both maternal (anthropometric status, breast milk composition) status and pediatric (growth and neurodevelopment) outcomes.

3 Determine the relationship between biomarkers and study arm

To understand association between biomarkers and any clinical effect observed by intervention arm.

Comparison of fecal biomarkers in mothers and infants

Bacterial' Panel Identification via TAC

Targeted Bifidobacterium' Identification via Realtime PCR

Metagenomic Analysis

Figure 1. Principal Coordinate Analysis (PCoA) of mother and infant samples.

Figure 2. Machine learning highlights functions that distinguish infants across treatment arms.

CONCLUSIONS & NEXT STEPS

- There are key differences in enteropathogen load, inflammatory markers, and microbiome profiles in mother infant dyads
- Future analysis will focus on determining which maternal biomarkers predict good clinical outcomes in infants (growth and neurodevelopment) and associate with better maternal health (anthropometric status and breast milk composition)
- Future analysis will also focus on arm wise analysis to determine which markers association with intervention
- These analysis will consist of a hypothesis-driven approach using multiple linear regressions as well a hypothesis-agnostic approach using supervised machine learning

Grand Challenges: Preserving Culture

Ravi Sheth, PhD Hertz-Gates Fellow (2018)

Fermentation is an ancient practice deeply intertwined with human biology & culture

Nearly all iconic foods are fermented & fermentation is pervasive across human cultures

1+1=3

Raw foods + microbes = something entirely new

Human ancestors predicted to adapt to fermentation 10M years ago¹

Microbes can improve the qualities of food across multiple distinct axes

Improve the preservation and stability of foods by excluding pathogens (through lowering pH, bacteriocin production, removing simple sugars) [1]

Improve macro- and micronutrient quality and bioavailability (e.g., B vitamins) [2]

Remove anti-nutrients (mycotoxins; phytates, which decrease iron availability) [3]

Transform taste, flavor and texture [4]

<u>1. De Vuyst L, J Mol Microbiol Biotechnol 2007; 2. Walther Advances in Nutrition 2013;</u> <u>3. Reddy Food Research International 1994; 4. Marshall Int. Journ. Food Sci Tech 2001</u>

COVID-19 reveals strains on centralized food processing driven by chemistry

Centralized chemical-driven food processing supply chains

Decentralized, distributed supply chains uniquely enabled by scalable biology

Most traditional fermentation processes remain uncharacterized with modern tools

Salt & lactic acid bacteria based fermentations

Fungal fermentations

Many fermentation processes are not considered fermentation!

The challenge

Beyond many of the well-known examples of microbial fermentation, the vast majority of fermentation processes around the world remain uncharacterized and their potential human health benefits are unknown.

These ancient practices may hold the key to impactful and locally targeted nutritional interventions that combine tradition and science to tackle malnutrition.

Rigorous scientific evaluation has been limited and characterization to understand potential benefits could be pursued to validate and underscore the importance of preserving this cultural heritage.

Grand Challenges Call

This call seeks to fund pilot studies that investigate the biological effect of traditional locally fermented foods on key microbiome, gut, and health biomarkers in local populations. The goal is to <u>provide</u> <u>investigators in Sub-Saharan Africa and South Asia with the resources to build local capacity</u> <u>to investigate fermented foods as novel maternal nutrition interventions</u>. Ultimately, the goal is to empower local communities to develop geography and culture specific interventions powered by fermentation, in country.

Identification of a local (geographic/cultural) fermented food for study Pilot study design for longitudinal intervention study for understanding the effect of the fermented food in a naïve (no, or limited, fermented food consumption) population (women of reproductive age)

Biological sample biobanking and characterization before and after food intervention

Sequencing as an democratizing & enabling scientific tool

A microscope for delineating and measuring microbes

Identifying and studying microbes at unprecedented resolution

Sheth, Nature Biotech 2019

DEVELOPING GENOMICS CAPACITY COLLABORATIVE NETWORK & RESEARCH

AASHISH R JHA, PHD ASSISTANT PROFESSOR OF BIOLOGY NEW YORK UNIVERSITY ABU DHABI

The Himalayan Diversity Project Ancestry | Microbiome | Environment | Disease www.himalayandiversityproject.org

DIVERSITY OF FERMENTED FOODS

DIVERSITY OF FERMENTED FOODS

How do we sequence microbiota of diverse food types?

STANDARDIZING MICROBIOMICS OF FERMENTED

UnderstandingSequencing• Comprehensive surveys• 16S and/or ITS• Metall• Culturally sensitive• Marker gene region• Metall• Modes of consumption• Sequencing platforms• Metall• Optimal uses• Sequencing depth• Strail• Optimal uses• Other

Sampling & Processing

- Collection methods
- Sample storage
- Extraction methods

Data analysis

- Reference libraries
- Statistics
- Machine learning

Continuation Metagenomics Metabolomics Metaproteomics Strain isolations Cytokine responses Other health effects

- Nutritional trials
- Other research
- Commercialization

COLLABORATION NETWORK FOR GENOMICS

SUMMARY

- Harmonizing sample collection, processing, sequencing, and data analysis allows us to integrate data across experiments and laboratories.
- Stanford and NYUAD will develop standard operating protocols (SOPs).
- NYUAD will conduct virtual trainings to assist awardees in project design, sampling, sample processing, amplicon sequencing, and data analysis in-country.
- Awardees can develop future collaborative projects with each other, Stanford, and NYUAD.

THANK YOU!

AASHISH R JHA TWITTER: **@NEPALIAASHISH** EMAIL: JHAAR@NYU.EDU

The Himalayan Diversity Project Ancestry | Microbiome | Environment | Disease www.himalayandiversityproject.org

