Samuel Alcaine of the University of Massachusetts Amherst in the U.S. will engineer bacteriophage (viruses that infect bacteria) to produce an antimicrobial compound that helps avoid bacteria such as enteroaggregative Escherichia coli developing resistance to the phage, thereby increasing their value for treating associated childhood diseases. Phage could be valuable for treating intestinal diseases that cause severe morbidity and mortality in developing countries as they can selectively destroy pathogenic bacteria. However, some bacteria rapidly develop resistance to the phage, which renders them useless. By inducing phage-infected bacteria to also release a toxic substance (bacteriocin), this would destroy any potentially resistant neighboring bacteria. They will engineer T7 bacteriophage to express one of two selected bacteriocins and test their ability to circumvent phage resistance in E. coli.
Grant ID
OPP1140004
Show on Hub
On
Show on Spoke
On
Follow-on Funding
Off
Lead Funding Organization
Initiatives
Principal Investigator
Award Manager
Individual Funder Information
Funding Organization
Funding Amount (in original currency)
100000.00
Funding Currency
USD
Funding Amount (in USD)
100000.00
Project Type
Project Primary Sector
Project Subsector
Funding Date Range
-
Funding Total (In US dollars)
100000.00
Co-Funded
False